In English

Estimates of the spherical and ultraspherical heat kernel

Daniel Andersson
Göteborg : Chalmers tekniska högskola, 2013. 46p s. Preprint - Department of Mathematical Sciences, Chalmers University of Technology and Göteborg University, ISSN 1652-9715, 2013.
[Examensarbete på avancerad nivå]

In this thesis we establish an upper bound for the spherical heat kernel on the N-dimensional unit sphere SN for N = 1; 2; 3. The strategy is to use the fact that the spherical heat kernel is completely determined by the ultraspherical heat kernel. By techniques from Fourier analysis, explicit formulas for the ultraspherical heat kernel with parameter = 1=2; 1=2 are deduced. Also, an integral formula for the kernel with parameter = 0 is introduced. By estimating these formulas for the ultraspherical heat kernels, the estimates of the spherical heat kernel are obtained. Furthermore, we prove that the periodized Gauss-Weierstrass kernel is strictly decreasing on [0; ]. Both an analytic and a probabilistic proof are given. A generalization of this result is also established for small t, saying that the spherical heat kernel on S2 and S3 is strictly decreasing as a function of the spherical distance between its two arguments.

Nyckelord: Periodized Gauss-Weierstrass kernel, spherical heat kernel, Jacobi heat kernel

Publikationen registrerades 2013-08-23. Den ändrades senast 2014-02-11

CPL ID: 182086

Detta är en tjänst från Chalmers bibliotek