In English

A Novel Method for the In-Situ Mechanical Characterization of Single Living Yeast Cells in an ESEM

Abilash Ram
Göteborg : Chalmers tekniska högskola, 2012. 76 s.
[Examensarbete på avancerad nivå]

Water transport is a very important activity in living cells. Normally, water transport in living cells occurs by the process of osmosis. However, there are cases where faster water transport is necessary. Water channel proteins are expressed in cells where faster water transport is required. Aquaporin (AQP) an example of water channel proteins. They are produced by astrocytic cells in the human brain. When a human brain experiences oedema as a result of physical trauma, the increased inter-cranial pressure can in some circumstances result in a coma. Since oedema consists of fluids including water, there is a suspicion that the water channel proteins could be involved. A study of the protein and its effect on the rate of water transport in single cells can lead to the clinical and/or pharmaceutical development of suitable protein inhibitors. This thesis establishes a method for the study of single living yeast cells using an Atomic Force Microscopy sensor as part of a nanometer resolution and precision characterization system inside an Environmental Scanning Electron Microscope (ESEM). First, different preparation methods, for the yeast cell sample, were tested until a specific kind known as the liquid cell culture was identified as being suitable for the purpose of this thesis. Next, experiments for characterization of the AFM sensor were performed followed by the characterization of a single cell. Results show that the AFM sensor works best with the electron beam of the microscope turned off. Single yeast cells were also successfully characterized. There are more cases and effects to investigate, evaluate and overcome before the system is completely suitable for the study of single living yeast cells. However, the system shows promise and can become an easy and systematic procedure for the study of AQP and its effects on the rate of water transport in single living yeast cells.

Nyckelord: ESEM, AFM, Nanometer-Precision Characterization, Nanometer Precision Motion, In-Situ Characterization of Biological Material, Aquaporin 4



Publikationen registrerades 2012-08-23. Den ändrades senast 2013-04-04

CPL ID: 162511

Detta är en tjänst från Chalmers bibliotek