### Skapa referens, olika format (klipp och klistra)

**Harvard**

Karlsson, A. (2011) *Pure Spinor Superfields*. Göteborg : Chalmers University of Technology

** BibTeX **

@mastersthesis{

Karlsson2011,

author={Karlsson, Anna},

title={Pure Spinor Superfields},

abstract={The current formalism of pure spinor superfields for the maximally supersymmetric Yang-Mills theory in 10 dimensions is presented, and two different ways of lifting the pure spinor constraint in order to render amplitude calculations simpler are studied.
To begin with, the general concept of supersymmetry is introduced: why it is interesting and how it is treated, after which the construction of the pure spinor superfield formalism is motivated and described. This via the presentation of the component algebra formalism which does not have manifest supersymmetry and via the usual examination of the physical properties of the superspace fields, which leads to the introduction of the pure spinor.
The pure spinor superfield formalism is furthermore described in some detail as to its cohomology (physical field components in the free theory), the way to obtain a formalism with interactions and how to construct a well defined way to perform integrals. Also, the current complications with amplitude calculations which occur due to
the pure spinor constraint are noted.
Finally, two attempts at lifting the pure spinor constraint are described, performed through the introduction of new fields and variables respectively, via the reducibility of the constraint. The first turn out to result in a formalism with properties similar to the case of the component algebra formalism. Though it is characterized by manifest supersymmetry, its algebra renders the formulation inefficient.
The second attempt at lifting the pure spinor constraint results in an infinite series of new variables, which does not appear to be possible to cut off at any level other than the one which gives at hand the pure spinor superfield formalism. Some properties of the subsequent formalism are however presented, though neither a definition of an integral nor a way to deal with the whole series yet have been identified.},

publisher={Institutionen för fundamental fysik, Matematisk fysik, Chalmers tekniska högskola},

place={Göteborg},

year={2011},

}

** RefWorks **

RT Generic

SR Print

ID 147537

A1 Karlsson, Anna

T1 Pure Spinor Superfields

YR 2011

AB The current formalism of pure spinor superfields for the maximally supersymmetric Yang-Mills theory in 10 dimensions is presented, and two different ways of lifting the pure spinor constraint in order to render amplitude calculations simpler are studied.
To begin with, the general concept of supersymmetry is introduced: why it is interesting and how it is treated, after which the construction of the pure spinor superfield formalism is motivated and described. This via the presentation of the component algebra formalism which does not have manifest supersymmetry and via the usual examination of the physical properties of the superspace fields, which leads to the introduction of the pure spinor.
The pure spinor superfield formalism is furthermore described in some detail as to its cohomology (physical field components in the free theory), the way to obtain a formalism with interactions and how to construct a well defined way to perform integrals. Also, the current complications with amplitude calculations which occur due to
the pure spinor constraint are noted.
Finally, two attempts at lifting the pure spinor constraint are described, performed through the introduction of new fields and variables respectively, via the reducibility of the constraint. The first turn out to result in a formalism with properties similar to the case of the component algebra formalism. Though it is characterized by manifest supersymmetry, its algebra renders the formulation inefficient.
The second attempt at lifting the pure spinor constraint results in an infinite series of new variables, which does not appear to be possible to cut off at any level other than the one which gives at hand the pure spinor superfield formalism. Some properties of the subsequent formalism are however presented, though neither a definition of an integral nor a way to deal with the whole series yet have been identified.

PB Institutionen för fundamental fysik, Matematisk fysik, Chalmers tekniska högskola,

LA eng

OL 30